This is the solution of pandas course (Data Types and Missing Values) on Kaggle site.
1. Get Data Type of Column
dtype = reviews.points.dtype
# or
dtype = reviews["points"].dtype
2. Change Data Type of Column
point_strings = reviews.points.astype(str)
# or
point_strings = reviews.points.astype('str')
# or
point_strings = reviews["points"].astype(str)
# or
point_strings = reviews["points"].astype('str')
3. Count the null Fields in Column
n_missing_prices = reviews.price.isnull().sum()
# or
n_missing_prices = reviews["price"].isnull().sum()
# or
n_missing_prices = pd.isnull(reviews.price).sum()
# or
n_missing_prices = pd.isnull(reviews["price"]).sum()
4. Fill null Fields in Column
reviews_per_region = reviews.region_1.fillna('Unknown')
.value_counts()
.sort_values(ascending=False)
# or
reviews_per_region = reviews["region_1"].fillna('Unknown')
.value_counts()
.sort_values(ascending=False)
'Python' 카테고리의 다른 글
[Python] Usage of .env (0) | 2022.04.23 |
---|---|
[Python] Pandas Course on Kaggle - 6 (0) | 2022.01.22 |
[Python] Pandas Course on Kaggle - 4 (0) | 2022.01.20 |
[Python] Pandas Course on Kaggle - 3 (0) | 2022.01.19 |
[Python] Pandas Course on Kaggle - 2 (0) | 2022.01.17 |
댓글